ATUL VIDYALAYA
 SECOND PRELIMINARY EXAMINATION-2012-13
 MATHEMATICS

GENERAL INSTRUCTION

(Three hours)
(Candidate are allowed additional 15 minutes for only reading the paper .
They must NOT start writing during this time)
There will be one paper of three hours duration of 100 marks. The syllabus is divided into three sections A, B and C. Section A is compulsory for all candidates. Candidates will have choice of attempting questions from either from Section B or Section C.

Section A($\mathbf{8 0}$ marks) will consists of 9 questions. Candidate will be required to answer Question -1 (Compulsory) and five out of the rest of the eight question.

Section B/C(20 marks) Candidate will be required to answer two questions out of three from either Section B or Section C.

Section - A

Question 1.

i) Find the value of x, if $\sin ^{-1}\left(\frac{5}{13}\right)+\sin ^{-1}\left(\frac{7}{25}\right)=\cot ^{-1} x$.
[3]
ii) Find the probability of getting an even number on the first die or a total of 8 in a single throw of two dice .
iii) For the matrix $A=\left[\begin{array}{ll}3 & 1 \\ 7 & 5\end{array}\right]$, find x and y so that $A^{2}=x I=y A$. Hence, find A^{-1}.
[3]
iv) Simplify the Boolean expression : $x+x \cdot y^{\prime}+x^{\prime} \cdot y$
[3]
v) Evaluate : ${ }^{\lim _{x \rightarrow \frac{\pi}{2}}(\sec x-\tan x)}$
[3]
vi) Show that the equation $y=b e^{x}+c e^{2 x}$ is a solution of the differential equation

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=0 \tag{3}
\end{equation*}
$$

vii) Find the area between the curve $x=y^{2}-2 y$, the y - axis and the abscissa, $y=1$ and $y=2$.
iix) Evaluate : $\int_{0}^{3} \frac{x}{1+x^{2}} d x$
ix) Find the modulus and amplitude of $\frac{2+3 i}{3+2 i}$.
x) Find " c " of the Lagrange's Mean Value Theorem when $f(x)=x(x-2)_{\text {in }}$ [1, 2]. [3]

Question 2.

i) Prove that $\left|\begin{array}{ccc}a & b & c \\ a-b & b-c & c-a \\ b+c & c+a & a+b\end{array}\right|=a^{3}+b^{3}+c^{3}-3 a b c$
ii) If $A=\left[\begin{array}{ccc}4 & -5 & -11 \\ 1 & -3 & 1 \\ 2 & 3 & -7\end{array}\right]$, find A^{-1}. Using A^{-1}, solve the system of linear equations:

$$
\begin{align*}
& 4 x-5 y-11 z=12 \\
& x-3 y+z=1 \\
& 2 x+3 y-7 z=2 \tag{5}
\end{align*}
$$

Atul Vidyalaya STD. XII SCI.

Question 3.

i) If $x \sqrt{1+y}+y \sqrt{1+x}=0$, prove that $\frac{d y}{d x}=-\frac{1}{(1+x)^{2}}$.
ii) Write the Boolean expression for the following switching circuit :

Using laws of Boolean algebra , simplify the circuit and construct an equivalent switching circuit.

Question 4

i) Evaluate : $\int_{0}^{\frac{\pi}{2}} \frac{d x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x}$
ii) Find the co-ordinate of the points on the ellipse $4 x^{2}+y^{2}=8$ at which tangents are parallel to the straight line $2 x-y=7$.

Question 5.

i) Suppose A and B are two equally strong table tennis players. Which of the following two events is more probable ?
a) A beats b in exactly 3 games out of 4 , or
b) A beats B in exactly 5 games out of 8 ?
ii) Find the probability of throwing 11 with three dice.

Question 6.
i) Evaluate : $\int x^{2} \sin ^{-1} x d x$
ii) Prove that the triangle of maximum area inscribed in a given circle must be equilateral.

Question 7.

i) Find the area of the region lying in the first quadrant bounded by the parabola $y^{2}=4 x$, the x -axis and the ordinate $x=4$.
ii) Verify Lagrange's Mean Value theorem for the given function in the given interval
and find the value of " c " of this theorem $f(x)=\sqrt{x^{2}-1}$ in [1, 3].

Question 8.

i) Calculate the coefficient of correlation between x and y for the following data: [5]

x	10	7	12	9	16	18	8	14
y	6	4	7	10	7	15	5	11

ii) If two coefficient of regression are -0.6 and -1.4 , find the coefficient of correlation .

Atul Vidyalaya

Pg. 2
STD. XII SCI.

Shaping the future MATHEMATICS

Question 9

i) If $1, \omega, \omega^{2}$ are the three cube roots of unity, show that

$$
\begin{equation*}
x^{3}-y^{3}=(x-y)\left(\omega x-\omega^{2} y\right)\left(\omega^{2} x-\omega y\right) \tag{5}
\end{equation*}
$$

ii) Solve : $\left(x^{2}-y x^{2}\right) d y+\left(y^{2}+x y^{2}\right) d x=0$

(Answer two questions from either Section B or Section C) SECTION B

Question 10

i) Prove that the triangle whose vertices have the position vectors $2 \hat{i}+4 \hat{j}-\hat{k}, 4 \hat{i}+5 \hat{j}+\hat{k}, 3 \hat{i}+6 \hat{j}-3 \hat{k}$ is an isosceles right angled triangle .
ii) If $a=4 \hat{i}+3 \hat{j}-\hat{k}, b=2 \hat{i}+\hat{j}+3 \hat{k}$ and $c=\hat{i}-\hat{j}+2 \hat{k}$, then simplify $(a-b) X(b+c)$.

Question 11

i) A variable plane is at a constant distance ${ }^{p}$ from origin and meets the axes in A, B and C. Through A, B, C planes are drawn parallel to the co-ordinate planes, show that the locus of their point of intersection is $x^{-2}+y^{-2}+z^{-2}=p^{-2}$.
ii) Find the equation to the line that intersects the lines $2 x+y-1=0, x+2 y+3 z=0$ and $3 x-y+z+2=0,4 x+5 y-2 z-3=0$ and parallel to the line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$.

Question 12

i) Urn - 1 contains 5 red and 5 black balls, urn -2 contains 4 red and 8 black balls and urn -3 contains 3 red and 6 black balls. One urn is chosen at random and a ball is drawn. The colour of the ball is black. What is the probability that this has been drawn from urn - 3 ?
ii) Mean and standard deviation of a binomial distribution are respectively 4 and $\sqrt{\frac{8}{3}}$. Find the value of n and p.

SECTION C

Question 13

i) What is the actual rate of interest which a banker gets for the money when he discounts a bill legally due in 6 months at 5% p.a.?
ii) A manufacturer produces nuts and bolts for industrial machinery . It takes 1 hour of work on machine A and 3 hours on machine B to produce a package of nuts,
while it takes 3 hours on machine A and 1 nour on machine B to produce a package of bolts . He earns a profit of `2.50 per package on nuts and` 1 per package on bolts. Form a linear programming problem to maximize his profit, if he operates each machine for at least 12 hours .

Question 14

i) What sum should be invested every year at 5\% per annum compound interest for 20 years to replace plant and machinery which is expected to cost then, 25% more , over its present cost of ` 60,000 ?

Atul Vidyalaya
Pg. 3
Shaping the future

STD. XII SCI.
MATHEMATICS
ii) Given the cost function $C(x)=50+2 x$ and demand function $p=100-4 x$.Find the (a) equilibrium output
(b) Maximum price

Question 15

i) From the following data, giving the prices in arbitrary units and quantities of commodities A , B and C compute the weighted aggregate index of 1992 using 1986 as base year :

Commodity	Quantities	Prices	
		1986	1992
A	7		
B	8	321	581
C	4	224	67

ii) The following mid-day temperature in degree centigrades were recorded at a place In the U.K. for the first 14 days of January 1975 :

Day	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Tem.	0	4	2	6	2	-1	-3	1	5	0	4	5	6	7

Calculate 5 day moving averages for this period and display them and the original table on the same graph .

